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Abstract. Special features that options include are the main reason of their growing amounts trading in the finan-
cial markets. Options can be used in many imaginative ways to create various attractive investment opportunities. 
Empirical researches all over the world illustrated that options incorporate an insurance element not available in 
any other security and because of that they can be used by investors to create return distributions unobtainable 
with the strategy of allocating funds between fixed income securities and stock portfolios. But investor must 
understand that one of the main aspects of profitable trading in derivative securities is their proper evaluation 
and pricing. As the exact valuation of options is quite difficult, the article deals with the theoretical and practical 
aspects of pricing of options. The purpose of the research is to adopt Monte Carlo simulation method to predict 
prices of plain vanilla options and to compare them to real option prices and option prices calculated using ana-
lytical Black-Scholes formula.
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1. Introduction

Though the history of trading in option contracts 
is quite old for the first time exchange listed op-
tions were traded in 1973. Since then, the volumes 
of their trade had risen sharply all over the world. 
This growing was determined by the special features 
that options include. Options can be used in many 
imaginative ways to create various attractive invest-
ment opportunities. Empirical researches presented 
in financial literature (Hull 2008, Friedentag 2000, 
Martin 2001, Evrim-Mandaci et al. 2013) illustrated 
that options incorporate an insurance element not 
available in any other security and because of that 
they can be used by investors to create return distri-
butions unobtainable with the strategy of allocating 
funds between a stock portfolios and fixed income se-
curities. Options can be used to speculate for profit, 

earn income to enhance investment returns, protect 
against a temporary decline in the value of a stock or 
other commodity both financial and material.

The pricing of option contracts is a very important 
area of research. Many problems in mathematical 
finance involve the computation of a particular in-
tegral. The primary methods for pricing options are 
binomial trees and other lattice methods, such as tri-
nomial trees, and finite difference methods to solve 
the associated boundary value partial differential 
equations. So in many cases those integrals can be 
valued analytically, and in still more cases they can be 
valued using numerical integration. For example, the 
Black-Scholes model provides explicit closed form 
solutions for the values of certain (European style) 
call and put options. 
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However, when the number of dimensions in the 
problem is large, analytical models and numerical 
integrals become unavailable, the formulas exhib-
iting them are complicated, entail many restrictive 
assumptions and difficult to evaluate accurately by 
conventional methods. In these cases, simulation 
methods often give better results, because they have 
proved to be valuable and flexible computational 
tools to calculate the value of options with multiple 
sources of uncertainty or with complicated features. 
The main characteristic that makes simulation so at-
tractive is its ability to cope with uncertainty in a 
very simple way. According to Cortazar (2000), the 
recent trend in modelling price uncertainty using 
multi-factor models is much easier to implement us-
ing standard simulation than using other numerical 
approaches. There are two most popular simulation 
methods: Monte Carlo simulation and Bootstrap ex-
periment. The research will be based on Monte Carlo 
simulation.

Monte Carlo simulation is one of the most popular 
numerical method for pricing financial options and 
other derivative securities because of the availabil-
ity of powerful workstations and recent advances in 
applying the tool (Charnes 2000; Tian et al. 2008). 
Moreover, Monte Carlo simulation is attractive rela-
tive to other numerical techniques because it is flex-
ible, easy to implement and modify.

The aim of the article is to adapt Monte Carlo sim-
ulation method to predict prices of vanilla option 
contracts and compare them to real observed op-
tion prices and to prices calculated with an analytical 
Black – Scholes formula. The object of the research is 
pricing of option contacts.

Logical analysis and synthesis of scientific literature, 
comparative analysis and graphical modelling, simu-
lation technique were used for the research.

2. Main concepts concerned with options

Different authors give the similar description of an 
option contract, all emphasizing the right to choose. 
An option can be described as an instrument giving 
its owner the right but not the obligation to buy or 
sell something at in advance fixed price. Options 
are available on a wide range of products, beginning 
from grain, raw materials and ending in financial as-
sets, gold or real estate. In this article the main atten-
tion is paid on stock options. 

There are two types of options – calls and puts. A 
call option gives the holder the right to buy specified 
quantity of the underlying asset at the strike price on 
or before expiration date. The writer of the option 
however, has the obligation to sell the underlying as-
set if the buyer of the call option decides to exercise 
his right to buy. A put option gives the holder the 
right to sell specified quantity of the underlying at 
the strike price on or before an expiry date (LIFFE 
2004). The writer of a put option has the obligation 
to buy the agreed asset at the strike price if the buyer 
decides to exercise his right to sell. The option holder 
is the person who buys the right conveyed by the op-
tion. The option writer or seller is obliged to perform 
according to the terms of the option. Strike price or 
exercise price is the price at which the option holder 
has the right either to purchase or to sell the underly-
ing asset. (Jarrow 1983)

There are three different terms for describing where 
an option is trading in relation to the price of the un-
derlying asset. These terms are “at-the-money”, “in-
the-money”, and “out-of-the money”. At the money 
means that the current market value of the underly-
ing asset is the same as the exercise price of the op-
tion. A call option is said to be in the money if the 
current market value of the underlying asset is above 
the exercise of the option. In the case of a put option 
current market value should be below the exercise 
price of the option. If the exercise price is above the 
current market value in the case of a call option and 
below in the case of a put option, the option is said to 
be out of the money. These options can be executed 
only at a lost. (Haugen 2001)

It is often useful to characterise an option in terms of 
its payoff to the purchaser of the option. The initial 
cost of the option is then not included in the calcula-
tion (Hull 2008). 

If K is the strike price and ST is the final price of the 
underlying asset, the payoff from a long position in a 
call option is  

 max (ST – K, 0)    (1)

This reflects the fact that the option will be exercised 
if ST > K and will not be exercised if ST ≤ K. The 
payoff to the holder of a short position in the Call 
option is

 max (ST – K, 0) = min (K – ST, 0)  (2)

The payoff to the holder of a long position in a Put 
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option is

 max (K – ST, 0)    (3)

And the payoff from a short position in a Put option is

 max (K – ST, 0) = min (ST – K, 0)   (4)

The style of an option refers to when that option is 
exercisable. According to Options Clearing Corpo-
ration (OCC) there may be three different styles of 
options: American style, European style and capped 
options. An American style option may be exercised 
at any time prior to its expiration. European style op-
tion may be exercised only during a specified period 
before the option expires. Usually such an option is 
exercised on its expiration day. Capped options are 
not traded in every exchange. Their trading condi-
tions are individually depending on the exchange 
they are traded. A capped option will be automati-
cally exercised prior to expiration if the options mar-
ket on which the option is trading determines that 
the value of the agreed asset at a specified time on 
a trading day reached the cap price of the option 
(Friedentag 2000).

3. Main principles of option pricing

Because of the complex valuation of option contracts 
the main scientific studies are devoted to analyse sepa-
rate methods of options pricing (Hull 2008; Jarrow, 
Rudd 1983; Martin 2001). Depending on the re-
quirements, the option pricing model can range 
in complexity from a simple binomial model, to 
Black-Scholes, to sophisticate analytical and simu-
lation models.

The primary methods for pricing options are bino-
mial trees and other lattice methods, such as trino-
mial trees, and finite difference methods to solve the 
associated boundary value partial differential equa-
tions. According to Jia (2009), due to the complexi-
ty of the underlying dynamics, analytical models for 
option pricing entail many restrictive assumptions, 
so for real-world applications approximate numeri-
cal methods are employed, these include the valua-
tion of options, the estimation of their sensitivities, 
risk analysis, and stress testing of portfolios. But, in 
recent years the complexity of numerical computa-
tion in financial theory and practice has increased 
enormously, putting more demands on computa-
tional speed and efficiency.

The most popular valuation model for options is the 

Black-Scholes model. The model is based on the the-
ory that markets are arbitrage free and assumes that 
the price of the underlying asset is characterized by 
a Geometric Brownian motion. This method is com-
monly used for pricing European options as there is 
an analytic solution for their price (Bampou 2008).

Another technique for pricing options is the bino-
mial lattice model. In essence, it is a simplification of 
the Black-Scholes method as it considers the fluctua-
tion of the price of the underlying asset in discrete 
time. This model is typically used to determine the 
price of European and American options (Bampou 
2008).

Monte Carlo simulation is a numerical method for 
pricing options. It assumes that in order to value an 
option, we need to find the expected value of the 
price of the underlying asset on the expiration date. 
Since the price is a random variable, one possible way 
of finding its expected value is by simulation. This 
model can be adapted to price almost any type of op-
tion (Bampou 2008).

The main options pricing models contain five fac-
tors that are used to determine a theoretical value for 
an option and which have to be taken into account 
when pricing option contracts (Hull 2008):
1. market price of the underlying asset;
2. strike price;
3. time to expiration;
4. volatility of the underlying asset;
5. interest rates;
6. dividends expecting during the life of the option.

Market price and strike price. The payoff from a call 
option will be the amount by which the stock price 
in the market exceeds the strike price dealt with the 
option. Call options therefore become more valuable 
as the stock price increases and less valuable as the 
strike price increases. For a put option, the payoff 
on exercise is the amount by which the strike price 
exceeds the stock price (Laurence, Avellaneda 2000). 
So the put option becomes less valuable as the stock 
price increases and more valuable as the strike price 
increases.

Time to expiration. Both put and call American op-
tions become more valuable as the time to expira-
tion increases. European put and call options do not 
necessarily become more valuable as the time to ex-
piration increases. This is because it is not true that 
the owner of a long-life European option has all the 
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exercise opportunities open to the owner of a short-
life European option.

Volatility. The volatility of a stock price is a meas-
ure of how uncertain we are about future stock price 
movements. As volatility increases, the chance that 
the stock price will change in both directions increas-
es. The value of both calls and puts therefore increase 
as volatility increases (Hull 2008; Martin 2001).

Risk-free interest rate. The risk-free interest rate affects 
the price of an option in a less clear-cut way. Without 
additional assumptions it is difficult to gauge the ef-
fect of increasing interest rates. Since increasing in-
terest rates decrease the present value of the exercise 
price, there is a tendency for call values to increase 
and put values to decrease. It should be emphasized 
that these results assume that all variables remain 
fixed. In practice, when interest rates fall (rise), stock 
prices tend to rise (fall). The net effect of an interest 
rate change and the accompanying stock price change 
therefore may be different from that just given (Hull 
2008; Jarrow, Rudd 1983).

Dividends. Dividends have the effect of reducing the 
stock price on the ex-dividend date. The values of 
call options are negatively related to the size of any 
anticipated dividend, and the value of a put option is 
positively related to the size of any anticipated divi-
dend.

As vanilla options are traded in exchange markets, 
it is more possibilities to find historical information 
about real market prices. In the case of exotic op-
tions there is no much of such possibilities because 
these contracts in many cases are over the counter 
contracts. Choosing adequate for market conditions 
pricing model is crucially important.

In order to price option investor must distinguish be-
tween intrinsic value and time value of option con-
tract. Intrinsic value is the value that any given op-
tion would have if it were exercised today. Basically, 
the intrinsic value is the amount by which the strike 
price of an option is in the money. It is the portion 
of an option’s price that is not lost due to the passage 
of time (Wagner 2009). The following equations can 
be used to calculate the intrinsic value of a call or put 
option:

Call Intrinsic Value = Underlying Stock’s Current 
Price – Call Strike Price    (5)

Put Intrinsic Value = Put Strike Price – Underlying 

Stock’s Current Price    (6)

The intrinsic value of an option reflects the effective 
financial advantage that would result from the im-
mediate exercise of that option. Basically, it is an op-
tion’s minimum value. Options trading at the money 
or out of the money have no intrinsic value.

The second important driver is time value. Prior to 
expiration, any premium in excess of intrinsic value 
is called time value (What is an Option? 2012). Time 
value is also known as the amount an investor is will-
ing to pay for an option above its intrinsic value, in 
the hope that at some time prior to expiration its 
value will increase because of a favourable change in 
the price of the underlying security (Wagner 2009). 
The longer the amount of time for market conditions 
to work to an investor’s benefit, the greater the time 
value. The formula for calculating the time value of 
an option is:

Time Value = Option Price – Intrinsic Value  (7)

Time value is basically the risk premium that the op-
tion seller requires to provide the option buyer the 
right to buy/sell the stock up to the date the option 
expires. It is like an insurance premium of the op-
tion; the higher the risk, the higher the cost to buy 
the option.

4. Monte Carlo simulation

Simulation methods can be very helpful when pricing 
options because prices of options do not have a sim-
ple closed form solution and efficient computational 
methods are needed to determine them. According 
to Gitman (2009), simulation is a statistics-based 
behavioural approach that applies predetermined 
probability distributions and random numbers to es-
timate risky outcomes. Another definition says that 
simulation is the imitation of a real world process of 
system. In finance, a basic model for the evolution of 
stock prices, interest rates, exchange rates, and other 
factors would be necessary to determine a fair price 
of a derivative security (Kaplan 2008). Simulations 
make assumptions about the behaviour of the system 
being modelled. Simulation is used because it trans-
fers work to the computer.

Despite the fact that simulation methods are very 
useful, they might have some limitations too (Ever-
aert 2011):
– Obtaining results may be computationally expen-
sive
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– The results may be imprecise
– The results are often hard to replicate
– The results are experiment – specific: as population 
must be specified, the results of a simulation cannot 
be generalised.

Monte Carlo simulation is one of the most popular 
numerical method for pricing financial options and 
other derivative securities because of the availabil-
ity of powerful workstations and recent advances in 
applying the tool (Charnes 2000; Tian et al. 2008). 
Monte Carlo simulation is a flexible method whose 
applicability does not depend on the dimension of 
the problem and does not suffer from the curse of 
dimensionality (Ibanez and Zapatero 2004). As the 
Monte-Carlo method relies on the average result of 
thousands of independent stochastic paths, massive 
parallelism can be adopted to accelerate the compu-
tation (Tian et al. 2008).

Many papers use Monte Carlo simulation since the 
pioneering works of Boyle (1977), Tilley (1993) and 
Bossaerts (1989). All these methods price options 
with a finite number of exercise opportunities, as an 
approximation to true American options. In general, 
they try to approximate the value function, or the 
optimal exercise frontier, combining simulation and 
dynamic programming. Methods based on dimen-
sionality reduction of the value function include Bar-
raquand and Martineau (1995), Tilley (1993), Carr 
and Yang (1997), Raymar and Zwecher (1997) and 
others. Methods based on the parameterization of 
the optimal exercise frontier include, among others, 
Bossaerts (1989), Grant et al. (1997), Garcia (2003) 
and Andersen (2000). Approximation of the value 
function is used in Tsitsiklis and Van Roy (1999), 
Carriere (1996), Longstaff and Schwartz (2001), 
Longstaff et al. (2001), Haugh and Kogan (2001). 
Moreover, Broadie and Glasserman (1997a) use sim-
ulated trees, while Broadie and Glasserman (1997b) 
and Boyle et al. (2001) use a stochastic mesh meth-
od. A numerical comparison of different algorithms 
is presented in Fu et al. (2001).

In some important applications, Monte Carlo sim-
ulation is used to find an approximate solution to 
a complex financial problem, particularly Europe-
an-style and exotic options for which no analytical 
pricing formula is available (DeFusco et al. 2001). 
A Monte Carlo method is a technique that involves 
using random numbers and probability to solve 
problems and simulates paths for asset prices (Ka-

plan 2008; Jia 2009). Monte Carlo simulation gen-
erates a sample by drawing from a hypothesised ana-
lytical distribution. One of the biggest advantages 
is that successive replications generate a collection 
of samples with the same distributional properties 
as the original data (Everaert 2011; Gitman 2009). 
Though, there are some disadvantages too, as results 
depend on whether the distributional assumption is 
correct, there is a slow rate of convergence, it is very 
time-consuming and computationally intensive.

Moreover, Monte Carlo simulation is attractive rela-
tive to other numerical techniques because it is flex-
ible, easy to implement and modify, and the error 
convergence rate is independent of the dimension of 
the problem (Charnes 2000). Since the convergence 
rate of Monte Carlo methods is generally independ-
ent of the number of state variables, it is clear that 
they become viable as the underlying models (asset 
prices and volatilities, interest rates) and derivative 
contracts themselves (defined on path-dependent 
functions or multiple assets) become more compli-
cated (Fu et al. 2001; Jia 2009). A key specification 
in Monte Carlo simulations is the probability distri-
butions of the various sources of risk. The implica-
tions of different investment policy decisions can be 
assessed through simulated time. In addition, Monte 
Carlo simulation is widely used to develop estimates 
of Value at Risk (DeFusco et al.. 2001). This method-
ology simulates many times the profit and loss per-
formance of the portfolio over a specified horizon. 

Boyle (1977) was the first one who proposed a Mon-
te Carlo simulation approach for European option 
valuation. The method is based on the idea that sim-
ulating price trajectories can approximate probabil-
ity distributions of terminal asset values. Option cash 
flows are computed for each simulation run and then 
averaged. The discounted average cash flow using the 
risk free interest rate represents a point estimator of 
the option value.

There are several ways to increase estimation accu-
racy; the simplest one is to increment the number 
of simulating paths. However, efficiency may also be 
improved by using variance reduction techniques, 
including the control-variate and antithetic-variate 
approaches (Cortazar 2000; Bolia and Juneja 2005). 
It will be interested in this thesis only in increasing 
the number of simulating paths.

The main characteristic that makes simulation so 
attractive is its ability to cope with uncertainty in a 
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very simple way. According to Cortazar (2000), the 
recent trend in modelling price uncertainty using 
multi-factor models is much easier to implement us-
ing standard simulation than using other numerical 
approaches.

5. Data and methodology

In order to adopt Monte Carlo simulation for option 
pricing Matlab software was used. The algorithms for 
simulation were based on the works of DeFusco et 
al. (2001), Everaert (2011), Zhang (2009), Godd-
ard (2006a, 2006b). Options prices were found in 5 
steps using Matlab software:
1) The characteristics of the option contract and un-
derlying asset were specified. As the underlying asset 
the S&P 500 index was chosen.
2) The time grid was indicated. The horizon in terms 
of calendar time was taken and spited into a number 
of sub-periods. Calendar time divided by the num-
ber of sub-periods is the time increment, ∆t.
3) Potential future asset paths were generated. 
4) The payoff for each path for both European calls 
and puts were calculated.
5) In order to get the Option price discount back 
was made.

As the purpose was to compare prices acquainted 
with Monte Carlo simulation with the prices calcu-
lated using Black-Scholes model, the following for-
mulas were used:

 c = Se-q(T-t) N(d1) - Xe–r (T – t) N(d2),   (8)

 p = Xe–r (T – t) N(-d2) - Se-q(T-t) N(-d1),  (9)

  
tTσ

t))(T/σq(r(S/X)d
−

−+−+
=

2ln 2

1
, 

(10)

  tTdd −−= σ12 .     (11)
where  c – premium of European call option;
  p – premium of European put option;
  S – stock price;
  X – exercise price;
  T-t – time to maturity;
  r – risk free interest rate;
  q – dividends;
  σ – volatility of stock price;
  N1, N2 – the cumulative normal distribu-
tion function.

The research was based on the analysis of S&P 500 
index, since it could be said that it is the most liquid 
one in the market. Historical data used in this re-

search cover the period of the year of 2011. To calcu-
late the volatility, the VIX index was taken, which is 
very useful to calculate S&P 500 index option prices. 
Moreover, US 3 month T-Bills were chosen as a risk 
free rate. Finally, the real historical S&P 500 index 
options prices were taken in order to compare simu-
lated prices.

6. Empirical results

S&P 500 index asset paths for three period groups were 
generated: 1) weekly, 2) monthly and 3) 50 days. Every 
time 10000 runs in Monte Carlo simulation were tak-
en in order to get asset paths. As it was mentioned all 
period groups were taken from the year of 2011. 

Simulated Asset Paths

Time to Expiry
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Fig.1. Asset path for a weekly (January 3-7) period

Source: Found by the authors

Simulated Asset Paths

Time to Expiry
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Fig.2. Asset path for a monthly (January) period

Source: Found by the authors

The first period group consists of 52 weeks or small 
periods. One week is considered to have 5 days, since 
only working days are important. The first weekly pe-
riod is shown graphically in Figure 1. All other asset 
paths of weekly periods look very similarly.

The second period group consists of 12 months or 
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little periods. One month 22 days on average, since 
weekends are excluded. Again, one of the monthly 
periods is shown graphically in Figure 2. All other 
asset paths for monthly periods have similar view.

Simulated Asset Paths
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Fig.3. Asset path for a period of 50 days

Source: Found by the authors

The last group of 50 days periods consists of only six 
periods. Periods start at January 28, February 9, Feb-
ruary 25, April 1, April 29 and May 11. Again every 
period asset path looks similar, so only one of these 
asset paths is also shown in the graph in Figure 3. 

The prices of European Call and Put Options were 
calculated from equations no. 1 and 4 from this 
work. Prices were found for all period groups. The 
following tables show European call and put option 
prices generated from Monte Carlo simulation ap-
proach in very time period group. 

Initially, it was started with the weekly period group. 
As it was mentioned before, weekends are excluded 
from every week, so there are only five days in a week. 
Since there are a lot of periods, there were created cy-
cles for each 52 weeks in Matlab software in order to 
generate option prices. 

Table 1. Simulated weekly European Call and Put 
prices

Weekly European Call European Put

07-Jan-11 8.39 10.12
14-Jan-11 26.08 1.54
21-Jan-11 39.84 0.46
28-Jan-11 12.53 6.65
04-Feb-11 28.49 1.48
11-Feb-11 4.89 13.84
18-Feb-11 18.12 3.23
25-Feb-11 18.19 6.41

04-Mar-11 26.75 2.58
11-Mar-11 61.49 0.13
18-Mar-11 8.99 18.93
25-Mar-11 30.64 1.56
01-Apr-11 13.63 6.53
08-Apr-11 15.16 4.82
15-Apr-11 35.67 0.52
22-Apr-11 1.05 27.82
29-Apr-11 48.58 0.07
06-May-11 9.80 8.75
13-May-11 9.43 8.37
20-May-11 43.31 0.24
27-May-11 6.57 12.08
03-Jun-11 40.42 0.42
10-Jun-11 30.71 1.44
17-Jun-11 7.99 15.72
24-Jun-11 45.45 0.44
01-Jul-11 0.03 66.32
08-Jul-11 87.34 0.00
15-Jul-11 1.42 33.44
22-Jul-11 44.33 0.42
29-Jul-11 22.43 5.41
05-Aug-11 20.15 9.98
12-Aug-11 48.58 6.72
19-Aug-11 30.91 11.02
26-Aug-11 15.05 26.29
02-Sep-11 46.13 3.90
09-Sep-11 10.97 30.88
16-Sep-11 22.50 15.40
23-Sep-11 28.90 12.66
30-Sep-11 30.24 15.25
07-Oct-11 50.11 6.27
14-Oct-11 22.67 11.92
21-Oct-11 15.88 19.62
28-Oct-11 25.09 8.10
04-Nov-11 35.98 6.05
11-Nov-11 8.17 29.35
18-Nov-11 30.69 8.98
25-Nov-11 36.08 6.91
02-Dec-11 13.34 18.22
09-Dec-11 4.33 36.59
16-Dec-11 84.32 0.10
23-Dec-11 10.47 13.60
30-Dec-11 36.43 2.02

Source: Found by the authors

Table 2 gives results for the simulated monthly prices 
of European options. Again, only working days are 
important, so one month may consist of 22 days on 
average. 
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Table 2. Simulated monthly Asian and European 
Call and Put prices

Monthly European Call European Put
Jan-11 7.90 43.99
Feb-11 11.66 38.21
Mar-11 19.97 32.36
Apr-11 13.91 28.87
May-11 43.41 8.30
Jun-11 6.64 57.26
Jul-11 138.67 0.30
Aug-11 55.11 29.61
Sep-11 52.64 32.55
Oct-11 8.44 95.73
Nov-11 38.86 36.13
Dec-11 31.35 26.72

Source: Found by the authors

The last table (Table 3) for European Options shows 
the simulated prices for periods of 50 days. There are 
only six periods.

Table 3. Simulated 50 days Asian and European Call 
and Put prices

Period  
starting at

Asian  
Call

Asian  
Put

European 
Call

European 
Put

28-Jan-11 13.11 29.9 32.08 46.2
9-Feb-11 19.93 16.96 39.93 32.27

25-Feb-11 11.37 29.2 28.89 43.8
1-Apr-11 40.35 4.28 59.04 14.91

29-Apr-11 22.04 15.28 40.85 29.81
11-May-11 24.31 13.41 43.41 28.02

Source: Found by the authors

Real historical option prices of S&P 500 index 
were taken in order to compare with European op-
tion prices simulated in Monte Carlo simulation. 
The historical prices were taken only for the year of 
2011, because a longer time span would imply a tre-
mendous amount of data. Moreover, data for 2011 
is available only for the first 5 months, that is from 
the beginning of January, 2011 till the end of May, 
2011. The data with observed prices contains S&P 
500 index Call and Put options, with varying times 
to maturity and strike prices. Since the data consists 
of highest close bid and the lowest close ask, the av-
erage of both was used as an approximation of the 
price. The real observed data is grouped in the same 
time period groups as the simulated option prices. 

Table 4 and the graph in the Figure 4 present weekly 
simulated and observed option prices. The real his-
torical option prices were available only until the end 
of May, 2011, so the comparison is made only for the 
part of 2011. Moreover, some observed prices were 
missing during some weeks for the whole period.

Table 4. Simulated and Observed Option prices 
(weekly)

Weekly
Simulated Observed

Call Put Call Put
07-Jan-11 8.39 10.12 9.4 10.45
14-Jan-11 26.08 1.54 - -
21-Jan-11 39.84 0.46 40.25 0.45
28-Jan-11 12.53 6.65 13 6.55
04-Feb-11 28.49 1.48 26.8 1.375
11-Feb-11 4.89 13.84 - -
18-Feb-11 18.12 3.23 15.85 3.45
25-Feb-11 18.19 6.41 17.25 6.2
04-Mar-11 26.75 2.58 24.75 2.4
11-Mar-11 61.49 0.13 - -
18-Mar-11 8.99 18.93 9.6 18.25
25-Mar-11 30.64 1.56 32.4 1.4
01-Apr-11 13.63 6.53 12.85 6.75
08-Apr-11 15.16 4.82 - -
15-Apr-11 35.67 0.52 33.05 0.5
22-Apr-11 1.05 27.82 - -
29-Apr-11 48.58 0.07 48.4 0.075
06-May-11 9.80 8.75 8.45 8.35
13-May-11 9.43 8.37 - -
20-May-11 43.31 0.24 45 0.275

Source: Found by the authors

From the table and the graph it can be found that 
simulated call prices in most of the cases vary only 
in tenth and only some do not match at all. For ex-
ample, there is a huge difference on March 11, when 
simulated call price is really high. However, this can-
not be counted as deviation, since real observed data 
is not available on that date. The same happens in 
other dates, where observed data is not available, and 
it was considered as zero in the graph.

Talking about Put prices, it was found that simulated 
Put prices are higher than the observed ones during 
these periods: February 11 and April 22. Again, it 
happened because observed data is missing on those 
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dates. Generally, it can be concluded that Monte 
Carlo simulation works pretty well when simulating 
option prices in weekly periods.

Table 5 and the graph in the Figure 5 give the results 
of monthly simulated and real historical option pric-
es. Again, the observed option prices were available 
only until the end of May, 2011.

Simulated Put Observed put
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Fig.4. Simulated and Observed Option prices (weekly)

Source: Found by the authors

From the table and the graph it is possible to see that 
simulated and observed prices match almost perfectly, 
only decimal parts differ in most of the cases. To sum 
up, Monte Carlo simulation helps very well to predict 
Call and Put option prices in monthly periods.

When comparing simulated and real observed prices 
during the different periods of 50 days, very simi-

lar results like during monthly periods can be seen. 
Simulated and historical prices match almost very 
well. Most of the prices vary only in tenth except few. 
Moreover, simulated prices are higher than the real 
observed prices at the end of the graph. In summary, 
Monte Carlo simulation is quite accurate when pre-
dicting option prices for the longer periods.
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Table 5. Simulated and Observed Option prices 
(monthly)

Monthly
Simulated Observed

Call Put Call Put
Jan-11 7.90 43.99 7.90 41.45
Feb-11 11.66 38.21 11.20 36.50
Mar-11 19.97 32.36 20.90 32.25
Apr-11 13.91 28.87 13.30 29.15
May-11 43.41 8.30 43.95 7.90

Source: Found by the authors

All in all, when comparing simulated option pric-
es with real historical prices, the results were quite 
similar for the given period of time. They show that 
Monte Carlo simulation helps to predict options 
prices very well for either very short time periods or 
very long time periods too. 
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Fig.5. Simulated and Observed Option prices (monthly)

Source: Found by the authors

Using Black – Scholes equation the prices were cal-
culated using real observed data of S&P 500 index 
from the year of 2011. The following tables and 
graphs give a comparison between simulated Eu-
ropean option prices and calculated with Black –
Scholes formula. The results from Black - Scholes are 

grouped in the same time period groups as the simu-
lated option prices. Therefore, simulated prices and 
prices from analytical Black- Scholes formula should 
be compared in weekly and monthly time periods, as 
well as in 50 day time periods. 
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07
-J

an
-1

1
21

-J
an

-1
1

04
-F

eb
-1

1
18

-F
eb

-1
1

04
-M

ar
-1

1
18

-M
ar

-1
1

01
-A

pr
-1

1
15

-A
pr

-1
1

29
-A

pr
-1

1
13

-M
ay

-1
1

27
-M

ay
-1

1
10

-J
un

-1
1

24
-J

un
-1

1
08

-J
ul

-1
1

22
-J

ul
-1

1
05

-A
ug

-1
1

19
-A

ug
-1

1
02

-S
ep

-1
1

16
-S

ep
-1

1
30

-S
ep

-1
1

14
-O

ct
-1

1
28

-O
ct

-1
1

11
-N

ov
-1

1
25

-N
ov

-1
1

09
-D

ec
-1

1
23

-D
ec

-1
1

100.00

80.00

60.00

40.00

20.00

0.00



J o u r n a l  o f  S e c u r i t y  a n d  S u s t a i n a b i l i t y  I s s u e s ,  2 0 1 3 ,  2 ( 4 ) :  6 5 – 7 9

75

Simulated Put Black - Scholes Put
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Fig.6. Weekly simulated and Black – Scholes option prices

Source: Found by the authors

Table 6. Weekly simulated and Black – Scholes option prices

Weekly
Simulated Black - Scholes

Weekly
Simulated Black - Scholes

Call Put Call Put Call Put Call Put
07-Jan-11 8.39 10.12 5.06 18.22 08-Jul-11 87.34 0.00 73.07 0.01
14-Jan-11 26.08 1.54 17.85 4.65 15-Jul-11 1.42 33.44 0.78 46.32
21-Jan-11 39.84 0.46 29.93 1.85 22-Jul-11 44.33 0.42 32.56 2.05
28-Jan-11 12.53 6.65 8.07 13.12 29-Jul-11 22.43 5.41 15.40 11.55
04-Feb-11 28.49 1.48 19.95 4.41 05-Aug-11 20.15 9.98 14.66 17.65
11-Feb-11 4.89 13.84 2.58 22.99 12-Aug-11 48.58 6.72 40.31 12.47
18-Feb-11 18.12 3.23 11.34 8.28 19-Aug-11 30.91 11.02 24.93 18.39
25-Feb-11 18.19 6.41 12.40 12.78 26-Aug-11 15.05 26.29 12.38 37.01
04-Mar-11 26.75 2.58 18.63 6.73 02-Sep-11 46.13 3.90 36.72 8.59
11-Mar-11 61.49 0.13 49.26 0.75 09-Sep-11 10.97 30.88 8.89 42.14
18-Mar-11 8.99 18.93 6.43 28.01 16-Sep-11 22.50 15.40 17.82 23.64
25-Mar-11 30.64 1.56 21.56 4.76 23-Sep-11 28.90 12.66 23.23 21.32
01-Apr-11 13.63 6.53 8.51 13.37 30-Sep-11 30.24 15.25 25.03 23.34
08-Apr-11 15.16 4.82 8.94 11.73 07-Oct-11 50.11 6.27 41.28 12.00
15-Apr-11 35.67 0.52 24.39 2.47 14-Oct-11 22.67 11.92 16.70 20.43
22-Apr-11 1.05 27.82 0.46 39.95 21-Oct-11 15.88 19.62 12.74 29.46
29-Apr-11 48.58 0.07 35.72 0.63 28-Oct-11 25.09 8.10 18.51 15.13
06-May-11 9.80 8.75 5.30 17.72 04-Nov-11 35.98 6.05 27.74 12.00
13-May-11 9.43 8.37 4.98 17.21 11-Nov-11 8.17 29.35 6.23 40.38
20-May-11 43.31 0.24 30.96 1.56 18-Nov-11 30.69 8.98 23.59 16.23
27-May-11 6.57 12.08 3.49 22.15 25-Nov-11 36.08 6.91 28.48 13.19
03-Jun-11 40.42 0.42 28.94 2.11 02-Dec-11 13.34 18.22 9.52 27.99
10-Jun-11 30.71 1.44 20.89 4.75 09-Dec-11 4.33 36.59 3.11 49.11
17-Jun-11 7.99 15.72 4.74 26.06 16-Dec-11 84.32 0.10 69.79 0.56
24-Jun-11 45.45 0.44 32.85 2.09 23-Dec-11 10.47 13.60 6.67 23.24
01-Jul-11 0.03 66.32 0.01 79.04 30-Dec-11 36.43 2.02 26.47 5.64

Source: Found by the authors
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Figure 6 and Table 6 show weekly simulated and 
Black – Scholes option prices. The results present 
that simulated Call option prices are a little bit high-
er than Call prices from analytical Black – Scholes 
formula whereas simulated Put option prices are a 
little bit lower. Generally, both simulated prices and 
prices calculated from analytical formula do not vary 
a lot as a result famous Black – Scholes formula can 
be replaced by Monte Carlo simulation when calcu-
lating option prices.

Table 7. Monthly simulated and Black – Scholes op-
tion prices

Monthly
Simulated Black – Scholes

Call Put Call Put
Jan-11 7.90 43.99 11.93 35.74
Feb-11 11.66 38.21 15.72 32.27
Mar-11 19.97 32.36 24.49 28.78
Apr-11 13.91 28.87 16.44 26.67
May-11 43.41 8.30 46.26 8.05
Jun-11 6.64 57.26 7.21 56.17
Jul-11 138.67 0.30 142.45 0.31
Aug-11 55.11 29.61 57.14 30.38
Sep-11 52.64 32.55 54.36 32.27
Oct-11 8.44 95.73 8.89 95.77
Nov-11 38.86 36.13 40.40 36.65
Dec-11 31.35 26.72 31.94 27.60

Source: Found by the authors
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Fig.7. Monthly simulated and Black – Scholes option prices

Source: Found by the author s

Table 7 and Figure 7 present monthly simulated and 
Black – Scholes option prices. As it can be seen from 
the graph both simulated prices and prices calcu-
lated from analytical formula match together almost 

perfectly, only in the beginning of the year there are 
small deviations. Commonly, Monte Carlo simula-
tion gives quite accurate results for option price pre-
diction during the monthly periods.
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Table 8. 50 days simulated and Black – Scholes op-
tion prices

Period  
starting at

Simulated Black – Scholes
Call Put Call Put

28-Jan-11 32.08 46.2 40.89 37.04
9-Feb-11 39.93 32.27 50.69 25.33

25-Feb-11 28.89 43.8 35.55 36.4
1-Apr-11 59.04 14.91 64.86 12.83

29-Apr-11 40.85 29.81 44.87 27.6
11-May-11 43.41 28.02 47.72 25.88

Source: Found by the authors

Finally, simulated and Black – Scholes option prices 
for the period of 50 days are given in Table 8 and Fig-
ure 8. Simulated Call prices and simulated Put prices 
move together with prices from analytical formula 
respectively. However, the graph shows that Black – 
Scholes Call option prices are higher than simulated 
ones, while Black – Scholes Put option prices are 
lower than simulated prices. This might tell that for 
longer periods Black – Scholes formula lead to some 
errors when the amount of data increases and Monte 
Carlo simulation becomes better method to calculate 
option prices. This also was discussed in literature in 
the papers of Jia (2009), Charnes (2000), Tian et al. 
(2008), Boyle (1977) and others.

Simulated Call Simulated Put Black - Scholes Call Black - Scholes Put
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Fig.8. 50 days simulated and Black – Scholes option prices 
Source: Found by the authors

To sum up, Monte Carlo simulation gives almost 
very good results when comparing with the results 
from analytical Black – Scholes formula. Both Call 
and Put option prices match very well especially in 
monthly periods. However, sometimes Monte Carlo 
simulation is even more accurate than the analytical 
model, especially in longer periods, like in this case 
of 50 days.

Conclusions

After the research of option pricing the following 
conclusions can be made:

The main distinguishing feature of the option con-
tract is that his holder has possibility to choose if to 
use this contract. The writer of the option is in the 

opposite position; he has the obligation to fulfil the 
choice of the holder.

The main factors in option pricing are market price 
of the underlying asset, strike price, volatility of the 
asset, time to maturity of the contract, interest rates 
and dividends. 

Option pricing is very essential area of research in 
financial community. Primary methods to calculate 
option prices remain binomial models and finite dif-
ference methods. So in most of the cases options can 
be valued analytically or using numerical combina-
tion.  For example, the most known Black – Scholes 
model provides obvious closed form solutions for the 
values of certain call and put options.

In situations when numerical and analytical models 
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become unavailable, simulation methods always give 
better results because they have proved to be valu-
able and flexible computational tools to calculate the 
value of options with multiple sources of uncertainty 
or with complicated features. The main characteristic 
that makes simulation so attractive is its ability to 
cope with uncertainty in a very simple way.

Monte Carlo simulation is one of the most popular 
numerical method for pricing financial options and 
other derivative securities because of the availability 
of powerful workstations and recent advances in ap-
plying the tool. Monte Carlo simulation proved to 
be very attractive technique, as it is flexible, easy to 
implement and modify.

The comparison between simulated European option 
prices and real observed option prices showed that 
simulated and historical prices in most of the cases 
matched almost perfectly and varied only in tenth. 
Generally, it can be concluded that Monte Carlo 
simulation helps pretty well when predicting option 
prices for either very short time periods or for longer 
time periods like 50 days.

The results presented that simulated Call option pric-
es are a little bit higher than Call prices from analyti-
cal Black – Scholes formula whereas simulated Put 
option prices are a little bit lower in weekly periods. 
When discussing the outcomes during the monthly 
periods, there were found that simulated and Black 
–Scholes option prices match almost perfectly, only 
in the beginning of the graph there were small de-
viations. Commonly, Monte Carlo simulation gives 
quite accurate results for option price prediction dur-
ing the short and medium periods.

During longer periods like 50 day periods, the re-
sults show that Black – Scholes Call option prices are 
higher than simulated ones, while Black – Scholes 
Put option prices are lower than simulated prices. 
This might tell that for longer periods Black – Scholes 
formula lead to some errors when the amount of data 
increases and Monte Carlo simulation becomes bet-
ter method to calculate option prices.

Both simulated prices and prices calculated from 
analytical formula do not vary a lot and as a result 
famous Black – Scholes formula can be replaced by 
Monte Carlo simulation when calculating option 
prices. Monte Carlo simulation is sometimes even 
more accurate than the analytical model, especially 
in longer periods.
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